Electricity, Biofuels or Hydrogen for Vehicles What should states do?

Clinton J Andrews

Edward J. Bloustein School of Planning and Public Policy

What is a Fuel? $H-C-H + O=O \bigoplus_{i=1}^{I} C-H O = OENERGY$ $H-C-H + O=O \bigoplus_{i=1}^{I} C-H O = OENERGY$

Courtesy of Daniel Nocera

Affordable, clean, secure?

https://documentingdissent.tv/catalog/images/Oil,%20War,%20&%20Geopolitics.JPG

NJ Energy Sources

EIA 2006

NJ Energy End-Uses

Aspirational, Long-Term Targets

- 1. Scenarios for NJ's future (controllable & uncontrollable factors)
- 2. Model NJ's performance using several indicators
- 3. Set targets for indicators but understand tradeoffs

<u>Scenarios</u>

- Uncontrollable Factors:
 - Baseline, High Growth, Low Growth
- Controllable Factors: Baseline +
 - Medium carbon tax (\$50)
 - High carbon tax (\$200)
 - Full cost energy pricing
 - High efficiency
 - Super high efficiency
 - Advanced bio-fuels
 - Super advanced biofuels
 - Compact growth: VMT reduction
 - No More NIMBY
 - Bundle #1: High efficiency, Full cost, Advanced bio-fuels
 - Bundle #2. Super high efficiency, Compact growth, Adv. bio-fuels

Environmental Target: CO2 Emissions from Energy

THE TARGET

Reduction to 1990 level \bigcirc by 2020 and 80% reduction from 2006 level by 2050.

THE GAP

Aggressive policy scenario

Aggressive implementation of known policies and technologies can reduce emissions sufficiently to achieve the 2020 target. (see p. 7 for scenario description)

The unknown future

After 2020, known policies fail to keep up with growth and we still need to reduce emissions dramatically to reach the 2036 and 2050 targets.

Economic Target: Energy expense as % of income

ENERGY EXPENDITURES AS A PERCENTAGE OF PERSONAL INCOME

FIGURE 5

USDOE 2007

Security Target: Percent of energy from local sources

PERCENTAGE OF NJ ENERGY CONSUMPTION MET BY LOCAL SOURCES

FIGURE 9

NJ Findings

- The 2020 GHG target is achievable with concerted short-term effort
- Long-term GHG target gap exists: we need "Solution X"
- Synergies exist between global warming and security solutions
- NJ is no longer an energy-intensive state, so aggressive policies are not too big a drag on the economy as a whole
- Now is the time to pursue the next level of detail on energy choices

Energy for Transportation

- Petroleum
- Natural gas
- Biofuels
- Hydrogen
- Electricity

Energy for Transportation

- Petroleum
- Natural gas
- Biofuels
- Hydrogen
- Electricity

Why Biofuels?

- Uses today's cars & fuel distribution
- Uses today's liquid fuel infrastructure
- Leverages current trends: FFV's, Hybrids
- Part of fuel market via "blending" just

add E85

V. Khosla www.khoslaventures.com

Long vs Short Carbon Cycle

10⁷ years

10⁰ years

Henry Joseph Jr., Brazilian Automotive Industry Association - ANFAVEA

THE CARBON CYCLE

Debate on Net Energy Benefits of Ethanol

Differences between Pimentel & Patzek and others lie in: Corn farming energy use •Energy use for producing nitrogen fertilizer •Ethanol plant energy use Credits for coproducts from biofuel plants

Corn EtOH Energy Balance Results Among Completed Studies Show an Uptrend

Energy balance here is defined as Btu content a gallon of ethanol minus fossil energy used to produce a gallon of ethanol

M. Wang http://www.transportation.anl.gov/pdfs/TA/347.pdf

Energy Benefits of Fuel Ethanol Lie in Reductions in Fossil Energy and Petroleum Use

ARGONNE NATIONAL LABORATORY

Use of Ethanol to Replace Gasoline Results in WTW Fossil Energy and Petroleum Benefits

ARGONNE NATIONAL LABORATORY

Technology Progression

http://geology.usgs.gov/connections/images/shared/og-us_prodution_map.jpg

M. Wang http://www.transportation.anl.gov/pdfs/TA/347.pdf http://static.howstuffworks.com/gif/blackout-grid.gif

http://images.encarta.msn.com/xrefmedia/aencmed/targets/maps/map/000a5302.gif

Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Gas Transportation Information System

http://www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/images/uspipe2007.jpg

Energy for Transportation

- Petroleum
- Natural gas
- Biofuels
- Hydrogen
- Electricity

Hydrogen?

Combustion of Hydrogen & Gasoline

Hydrogen car to the left, Gasoline car to the right

www.altfuels,com

Electrolysis and Reformation

https://apps3.eere.energy.gov/ba/pba/analysis_database/docs/image/hydrogen_production_by_volume.gif

Fuel Cells

http://www.hcn.org/allimages/2007/jul23/graphics/070723-027.jpg

There are four major types of Fuel Cells Commercially Available to the Market

- Polymer Electrolyte or Proton Exchange Membrane Fuel Cell (PEM)
- Phosphoric Acid
 Fuel Cell (PAFC)
- Molten Carbonate
 Fuel Cell (MCFC)
- Solid Oxide Fuel Cell (SOFC)

DELIVERED H₂ COSTS OF VARIOUS TECHNOLOGIES

• GEA = Gasoline Efficiency Adjusted – scaled to hybrid vehicle efficiency

National Research Council 2006

CARBON RELEASED DURING H₂ PRODUCTION, DISPENSING & DELIVERY (FUTURE TECHNOLOGIES)

Technologies

Focal Point of Federal Policy

- Research, development, and validation of fuel cell and hydrogen production, delivery, and storage technologies
- Developing hydrogen from various domestic resources
- Promote the use of hydrogen for clean, safe, reliable, and affordable energy for fuel cell vehicles and stationary power applications
- Ensuring abundant, reliable, and affordable energy supply through the 21st Century.

http://hydrogencommerce.com/images/BC-CalifHH.jpg

http://hydrogencommerce.com/images/mapNY.jpg

State Approaches to Hydrogen Policy:

California-- Minimizing the impact of car-dependency Michigan-- Adapting key industry New Jersey- Hydrogen Learning Center & Experiments New York-- Hydrogen Energy Roadmap Connecticut-- New economic development prospects Hawaii-- Energy independence

Energy for Transportation

- Petroleum
- Natural gas
- Biofuels
- Hydrogen
- Electricity

Electricity

http://www.osha.gov/SLTC/etools/electric_power/illustrated_glossary/index.html

U.S. Electricity Generating Capacity, including Combined Heat and Power, 2004-2030 (gigawatts)

Annual Energy Outlook 2006

Old World:

Customers purchased bundled service from a local utility having full responsibility for reliable service.

©Dominion Resources, Inc. 2001

New World: Restructured Markets

- Every arrow represents a possible contract interface.
- Expect each business will act in the interests of its shareholders.

Responsibilities

- The **RTO** will assume responsibility for operation of the transmission system.
- The LSE has the responsibility to procure supplies for customers.
- The **Generators** are responsible for meeting contract obligations with LSEs for supply.
- The Distribution
 Companies will provide
 local delivery service.

Load Aggregator can extend traditional Demand Response solutions like Thermostats and A/C cycling switches with Stored Energy reclamation from EVs, through reaction to wholesale *price* signals or *regulation* commands.

Geographic Vulnerability & Limited Resources

Imports of Electricity to NJ 1960-2005 (million		
1960 k ^v	Wh) 3,785	
1970	5,822	
1980	73,410	
1990	85,153	
2000	57,002	
2005	82,877	

Represents approx. 25% of total consumption in 2005

Cost Structure of Electricity

Potential Effect of a Stressed Electric Grid

August 14, 2003 East Coast blackout

Summer 2007 Queens 9-day blackout

What limits rate of deployment of hybrids & plug-ins? Cost, cost, cost...

- Hybrid Prius vs. regular Prius: cost penalty = \$3000 (2006 data Car & Driver, Financial Times) about enough to pay off at \$3-4/gallon without interest
- About \$2000 of the \$3000 is for small fast battery, currently nickel hydride less than 1kwh.
- \$1,000-\$2,000 tax incentive per car, for the first million hybrids from each manufacturer, essential to speed of development, becoming cheaper, in US
- Outside the US, higher gas price bigger market now, but subsidized gasoline prices in China cheaper than US

World's First Mass Market PHEV 2nd half of 2008: BYD Motors F6DM

- •20 kwh battery, 65 miles all-electric driving range
- •Made in Shenzhen, China
- •Follow-on in 2009: F3DM, 100 miles all-electric
- •www.byd.com

Other contenders

- GM Volt, 14kwh, 40 miles: planned for late 2010, using A123 or LG Chem advanced lithium battery. Enough for 90% of US to get to work in case of total gasoline embargo, if employer parking lots have recharge stations.
- Hyundai: US mass-market hybrid 2009, no comment on plug-in, deal with LG Chem and massive new Korean battery program www.eetimes.eu/power/196600822
- Toyota: 2010 PHEVs to fleet owners only, a test, using proprietary advanced lithium-ion battery and power electronics technology GM cannot buy. Plans to keep doubling hybrid output every year.
- Chery (China) says by 2010: half of its million cars per year will be hybrids, half of them on alternate liquid fuels. 40% will be for export.
- Dongfeng Electric Car Company, and Chang'An

How To Zero Out Gasoline Dependency: Best Near-Term Hope for 100% Renewable Zero-Net-CO2 cars & Total Security for Car Fuel

Highest mpg Hybrids Cut Gas per Mile By 50% With GEM* fuel-flexible cars, biofuels might supply ¼ of present liquid fuel demand trends Plug-in Hybrids with 10kwh batteries get half their energy from electricity

*GEM = Gasoline-Ethanol-Methanol

Scales of Energy Markets

- <u>Oil</u>: once local, now global
- Coal: once local, now global
- <u>Natural gas</u>: once local, now continental
- <u>Electricity</u>: once local, now regional
- <u>Hydrogen</u>: now local, eventually continental?
- State & local policies affect trajectories

States & Localities Vary Greatly

- <u>Preferences</u> (Dem/Rep, hunter/enviro, ...)
- <u>Capabilities</u> (large/small, rich/poor, ...)
- <u>Circumstances</u> (producer/consumer, urban/rural, ...)
- Seeds of technological transitions encounter more fertile soil in certain jurisdictions

Where will innovations take root?

- Innovative culture
- High capacity to act
- Attractive circumstances

- e.g., Iceland
- But no U.S. states have the ideal combo of preferences, capabilities, circumstances

Hydrogen Economy Activity

Jurisdiction	Preferences	Capabilities	Circumstances
California	X	X	
Connecticut	Х	Х	
Hawaii	Х		Х
Michigan		Х	
New Jersey	Х	Х	
New York	X	Х	
Texas		Х	Х
Washington	Х	Х	

State GHG Emission Targets

Vehicle GHG Standards

Renewable Portfolio Standards

Mandates and Incentives for Biofuels

Motivations for Local Action

- Motivations mirror those of states
 - Much to lose from climate impacts (sea level, storms, temperatures increases, water, etc.)
 - Much to gain from opportunities (economic development, energy savings, air quality)
- Localities have relevant authorities
 - Building and development permits (influence energy and land use)
 - Public transit
 - Building codes
 - Municipal electric utilities
 - Other

Adopted from http://public.fotki.com/MNCapital/twincitiespagecom-2/saint_paul_neighborhoods/neighborhood_battle/dr11.html

ted from http://www.cr.nps.gov/nr/newsuburbs.htm

Efficient Land Use Patterns

Adopted from http://www.census.gov/pubinfo/www/photos/comm

Efficient Behaviors

- Carpool, vanpool
- Transit passes
- Flextime, telework
- Biking, walking

http://blog.nj.com/newsletters/2008/01/large_njt.JPG

http://www.emagazine.co m/images/0199nd_teleco mmute.jpg

http://blog.lib.umn.edu/rivar050/architecture/images/russian_carpool.jpg

http://www.viainfo.net/Images/OtherService/VanPoolVan.jpg

How Allocate Responsibilities?

- Federalism is key part of context
- <u>Centralize</u> responsibilities to take advantage of scale economies, enforce national norms, pool risks, reduce spillovers
- <u>Decentralize</u> responsibilities to allow experimentation, match local circumstances, encourage diverse civic cultures

Federal Government Role

- Sponsor fundamental research at significant & stable level
- Promote adoption of standards
- Subsidize state-level experiments, ensure shared learning from those experiments
- Reinvigorate the practice of nonpartisan technology assessment

State Government Role

- Sponsor or implement applied research, cost-effective demonstration projects
- Encourage regulated utilities to investigate PHEVs & hydrogen
- Develop more efficient land uses
- Sponsor outreach, education, esp. for leaders

So...

- Don't decide indeterminate aspects of transportation future a priori using ideology or interests—centralized vs. decentralized, nuclear vs. renewables.
- Instead, experiment, find out empirically what approaches bring desired outcomes.

State actions buy us time to innovate

- Work at state level on no-regrets solutions today (smart behavior, smart growth, efficient electricity pricing)
- Deploy public policies to align private incentives (carbon tax/cap, land use regulation, efficiency standards)
- Pursue engineering advances for integrate-able systems (smart grids & loads, plug-in hybrid electric vehicles)
- Don't seek engineering solutions in areas where basic science isn't ripe (solar, biofuels, fusion)
- Support basic science for long-term solutions (chemistry, physics, biology)

policy.rutgers.edu/andrews innovation.rutgers.edu policy.rutgers.edu/vtc rei.rutgers.edu