Rensselaer School of Engineering

JONSSON ENGINEERAS

A Simulation-Optimization Formulation for Design of Off-Peak Delivery Policies

Michael A. Silas, MS Ph.D Student Rensselaer Polytechnic Institute The Department of Civil and Environmental Engineering

Outline

Introduction

- What exactly are Off-Peak Deliveries (OPD)
- New York City study on OPD
- Simulation-Optimization Framework
- Findings
- Conclusions
- Questions

Introduction

- Urban vehicle traffic congestion is a serious problem
- Another method is to control delivery times on the business and corporate levels of operations.
 - Specifically having carriers shift part of their shipping operations to the off-peak hours
 - Ex: One seventy foot truck occupies about 3 car lengths
 Parking and Interstate space are scarce in congested areas
- Shifting delivery times has the potential to reduce traffic congestion and improve environmental quality

3

What exactly are Off-Peak Deliveries (OPD)?

 Off-Peak Deliveries (OPD) is the receiving and shipping of goods outside of regular business hours (6PM and 6AM)

OPD needs the two major stakeholders to agree about delivery times: Receivers and Carriers

Incentives for participation

Receivers – tax deductions

Carriers – toll discounts, financial rewards

 Policy analysis techniques are needed to understand how to increase the participation in OPD

OF

Studies on OPD

New York City

NYSDOT initiative

- Two phases: Manhattan and Brooklyn
- Outreach efforts
 - Focus Groups
 - In depth Interviews
 - Surveys
- ✤ Key Findings
 - Receivers are the main stumbling block to OPD
 - Tax deductions would foster OPD
 - Carriers are most likely to participate in OPD

Studies on OPD

Schematic of decision making process

 Further work is needed to understand how to foster more OPD

9/18/2007

Simulation-Optimization Framework

September 11th Program funded research

* "A Simulation-Optimization formulation for the design of OPD"

Using Economic Incentives to foster more participation

Receivers: Tax deductions

Carriers: Toll Savings, Financial Rewards

Randomly select a commodity, a carrier, and a set of receivers.

Simulate receivers' and carrier behaviors towards OPD
 Optimize OPD participation, budget constraints

Define performance metrics/objectives to optimize and policies Π_r and Π_c

Carrier-Receiver Selection Process

- -Randomly select industry segment k (commodity)
- -Randomly select one carrier from industry segment k
- -Read number of receivers for industry segment k
- -Randomly select number receivers designated by selected carrier number of stops

Receiver Simulation

-Model selected receivers' decisions

-Classify into regular hour receivers and off-peak receivers

Carrier Simulation

-Compute base case, regular hour and off-peak distances and costs.

-Model selected carrier's decision to do OPD.

-Save the results and compute performance metrics.

Repeat for another carrier

Update policies Π_r and Π_c until optimization is complete

End

Receiver Simulation

Use Discrete Choice Modeling with Tax Deduction as policy variable to model the Receivers' decision about the delivery time of goods and services.

Monte Carlo Simulation is used as a platform to model the receivers' decision.

9

Carrier Simulation

Model the decisions of Carriers on whether or not make OPD based on:

- Receivers' (Customer) decisions
- Calculation of shortest route distances amongst Receivers
- Calculation of transportation costs.

Very Important

10

Carrier Simulation

Calculate shortest tour distance amongst the selected receivers

Heuristics like the Radial Sween Heuristic

Carrier Simulation

Cost Estimations:

$$C = C_d * D + C_t * T + 15 * C_t * Stops$$

Assumption:

Carriers can travel twice the speed in the OP than in RH and BC

Findings

9/18/2007

The decision for Carriers to do OPD is driven by Receiver behaviors.

Transportation costs are influenced by the distance to the first stop.

Findings

Receiver and Carrier participation is increasing with respect to increases in the economic incentives given to Receivers

9/18/2007

Findings

Carrier route selection influences decisions on OPD

- Areas with higher densities of receivers influences OPD operations
- Industry Segments <u>most receptive</u> and <u>sensitive</u> to OPD
 - Food
 - Non-Alcoholic Beverages
 - Alcoholic Beverages
 - Printed Material
 - Paper
 - Medical Supplies
 - ✤ Metal
 - Wood/Lumber

Conclusions

Simulation-Optimization framework is a valuable tool in identifying market segments (industry segments, areas, company characteristics, etc.) in the NYC region where OPD might be useful.

Simulation-Optimization framework is a tool that can demonstrate the effectiveness of OPD, and its impact on the transportation market in urban areas.

Acknowledgements

- Dissertation Advisor: Jose Holguín-Veras, Ph.D., P.E. (Rensselaer Polytechnic Institute)
- Professional Advisor: Mr. Nathan Erlbaum (NYSDOT)
- September 11th Fellowship Program Director: Mr. Todd Goldman

Questions???

