

Learning Outcomes

At the end of this module, you will be able to:

1. Explain why tight/right angle intersections are best
2. Describe why pedestrians need access to all corners
3. Assess good crosswalk placement: where peds want to cross \& where drivers can see them
4. Explain how islands can break up complex intersections

Intersection Crashes

Some basic facts:

1. Most (urban) crashes occur at intersections
2. 40% occur at signalized intersections
3. Most are associated with turning movements
4. Geometry matters: keeping intersections tight, simple \& slow speed make them safer for everyone

\square Small, tight intersections best for pedestrians...
\square Simple, few conflicts, slow speeds
Designing for Pedestrian Safety - Intersection Geometry

Large intersections can work for pedestrians with mitigation

Skewed intersections

Skew increases crossing distance \& speed of turning cars

Designing for Pedestrian Safety - Intersection Geometry

Cars can turn at high speed

Designing for Pedestrian Safety - Intersection Geometry

Skew increases crosswalk length, decreases visibility

Right angle decreases crosswalk length, increases visibility
Designing for Pedestrian Safety - Intersection Geometry

\square Skewed intersection reduces visibility
\square Driver looks left, doesn't see pedestrian on right

[^0]

Adjust skew by bringing out curb

Designing for Pedestrian Safety - Intersection Geometry

Result: driver behavior change

Designing for Pedestrian Safety - Intersection Geometry

Curb radius - small radii are safer for pedestrians
\square Large radii:
\square Increase crossing distance and
\square Make crosswalk \& ramp placement more difficult

Effect of large radius on crosswalk:

It adds to crossing distance...
Designing for Pedestrian Safety - Intersection Geometry

Effect of large radius on crosswalk:

Note right-turning vehicle
... and makes it hard to figure out where to cross

Designing for Pedestrian Safety - Intersection Geometry

Effect of large radius on drivers

They drive fast, ignoring pedestrians

Designing for Pedestrian Safety - Intersection Geometry

Minimize curb radius

1. Calculate effective radius: Larger than built radius if travel lanes offset from curb with parking and/or bike lane

Minimize curb radius

2. At one-way streets, corner with no turns can have tight radius

Designing for Pedestrian Safety - Intersection Geometry

Minimize curb radius

3. Don't choose larger design vehicle than necessary

Bus makes turn several times an hour

Minimize curb radius

3. Don't choose larger design vehicle than necessary

Moving van, once or twice a year; peds cross every day

Minimize curb radius

4. Where appropriate, let trucks use 2nd lane

Designing for Pedestrian Safety - Intersection Geometry

Minimize curb radius

5. Trucks can make very tight turns at slow speeds

Designing for Pedestrian Safety - Intersection Geometry

Minimize curb radius

6.a Turn common Single Unit truck (SU-30) into near lane

Designing for Pedestrian Safety - Intersection Geometry

Minimize curb radius

6.b Turn less common Semi (WB-50) into 2nd lane

Designing for Pedestrian Safety - Intersection Geometry

Minimize Curb Radius w/Truck Apron

Minimize Curb Radius w/Truck Apron

Charlotte NC

5-27 Discussion:

What are your policies \& practices regarding corner radii?

Curb extensions Most focus is on reduced crossing distance

Other advantages

\square Better visibility between peds and motorists
\square Traffic calming
\square Room for street furniture
Curb extensions should be the width of the parking lane and not encroach on bike lanes or travel lanes

Better Visibility

[^1]

Pedestrians wait where they can see, in front of parked cars

Curb ext. places pedestrian where he can see and be seen

Before: high speed right-turns

Designing for Pedestrian Safety - Intersection Geometry

After: slow speed right-turns

\square Curb extension and new corner radius must be designed together - see earlier radius discussion

Curb ext. increases likelihood drivers will yield to peds

Bike parking
Curb extensions allow room for street furniture

- But use care not to block sight lines

Curb extensions enable signs to be moved in

Drainage solutions 1. Additional inlet

Designing for Pedestrian Safety - Intersection Geometry

Drainage solutions 2 . Slotted drain

Drainage solutions 3. Leave original curb + islands

Drainage solutions 4. Same as before, plus plate Designing for Pedestrian Safety - Intersection Geometry

Curb Extension Integrated with the Sidewalk

"Parking pockets" in furniture zone have similar surface materials as the sidewalk

Designing for Pedestrian Safety - Intersection Geometry

Before: road looks and feels wide

Designing for Pedestrian Safety - Intersection Geometry

After: curb extension integral to sidewalk Street looks narrow even with no parked cars

[^2]

More examples: curb extension integral to sidewalk

[^3]
Reminder - crosswalks are provided:

1. To indicate to pedestrians where to cross
2. To indicate to drivers where to expect pedestrians

Designing for Pedestrian Safety - Intersection Geometry

Crosswalks should normally be placed on all legs of an intersection

=-Should there be a crosswalk here?

Of course!
Closing a crosswalk is not the answer

Large intersection is capacity driven, pedestrian unfriendly...

Crosswalk placement requires balancing several goals that sometimes compete:

\square Shortest crosswalk length
\square Minimal crosswalk setback to:

- Reduce out-of-direction travel
\square Provide good sight lines between peds and motorists
\square Proper ramp placement:
\square Ramps entirely contained in crosswalk
\square Two ramps preferred whenever possible

Small corner radii allow two ramps, shortest crosswalks, direct travel paths

Larger radii create large undefined areas

Designing Streets for Pedestrians - Intersection Geometry

Crosswalks at shortest crossing = longer walking distance

Single ramp reduces crosswalk setback but lengthens crosswalk

[^4]Balancing the goals works best

Designing Streets for Pedestrians - Intersection Geometry

Crosswalk placement: Observe pedestrians

"When in doubt, paint it out!"

Honolulu HI

Crosswalks can have odd shapes to take pedestrians where they want to go

Designing for Pedestrian Safety - Intersection Geometry

5-56 Discussion:

What are your policies \& practices regarding crosswalk placement?

Pedestrian Islands

Benefits:

\square Separate conflicts \& decision points
\square Reduce crossing distance
\square Improve signal timing
\square Reduce crashes

Imagine the signal timing without island

Designing for Pedestrian Safety - Intersection Geometry

Right-Turn Slip Lane: Design for Pedestrians

High speed, head turner = low visibility of pedestrians

Tighter angle
55 to 60 degree angle between vehicle flows.

Slow speed, good angle = good visibility of pedestrians

Right-Turn Slip Lane - Details

Drivers naturally trace the right island shape

Fresno CA

... instead of here

Atlanta GA
Designing for Pedestrian Safety - Intersection Geometry

Raised islands can improve a large multi-lane intersection

Raised islands can improve a large multi-lane intersection

1. Build raised islands between thru \& RT lanes to separate ped/driver conflicts. Consolidate two crosswalks into one.

Raised islands can improve a large multi-lane intersection

2. Move stop bar forward to improve capacity and safety for motorists

Honolulu HI

Island Design Details

Cut-through preferred over ramps

- Truncated domes at cut-throughs
- 8' or more preferred width - 6' minimum

Designing for Pedestrian Safety - Intersection Geometry

With ramps, provide at least 48 " level area

Designing for Pedestrian Safety - Intersection Geometry

Designing for Pedestrian Safety - Intersection Geometry

Not acceptable

Acceptable, not great

Best:

\square Bullet nose protects pedestrians from high-speed leftturning cars

5-72 Discussion:

What are your policies \& practices regarding providing pedestrian islands?

Intersection Geometry:
 Recap of Design Measures

\square Should pedestrians have access to all corners?

- Yes
\square Why?
\square Otherwise peds will dash across anyway
\square Intersection geometry should be?
- Tight (small radii); right angles
\square How do you break up complex intersections?
- With islands
\square Where should you place crosswalks?
\square Where pedestrians want to cross and where drivers can see them

Intersection Geometry
 Learning Outcomes

1. You should now be able to:
2. Explain why tight/right angle intersections are best
3. Describe why pedestrians need access to all corners
4. Assess good crosswalk placement: where peds want to cross \& where drivers can see them
5. Explain how islands break up complex intersections

5-75 Questions?

[^0]: Designing for Pedestrian Safety - Intersection Geometry

[^1]: Designing for Pedestrian Safety - Intersection Geometry

[^2]: Designing for Pedestrian Safety - Intersection Geometry

[^3]: Designing for Pedestrian Safety - Intersection Geometry

[^4]: Designing Streets for Pedestrians - Intersection Geometry

