

INTERSECTION GEOMETRY

Learning Outcomes

At the end of this module, you will be able to:

- Explain why tight/right angle intersections are best
- 2. Describe why pedestrians need access to all corners
- 3. Assess good crosswalk placement: where peds want to cross & where drivers can see them
- 4. Explain how islands can break up complex intersections

Intersection Crashes Some basic facts:

- 1. Most (urban) crashes occur at intersections
- 2. 40% occur at signalized intersections
- 3. Most are associated with turning movements
- 4. Geometry matters: keeping intersections tight, simple & slow speed make them safer for everyone

- 5-4 Philadelphia PA
- □ Small, tight intersections best for pedestrians...
- □ Simple, few conflicts, slow speeds

Atlanta GA

Large intersections can work for pedestrians with mitigation

Skewed intersections

Skew increases crossing distance & speed of turning cars

Philadelphia PA

Cars can turn at high speed

Skew increases crosswalk length, decreases visibility

5-8

Right angle decreases crosswalk length, increases visibility

- □ Skewed intersection reduces visibility
- □ Driver looks left, doesn't see pedestrian on right

5-11 Bend OR

Adjust skew by bringing out curb

Result: driver behavior change

Curb radius – small radii are safer for pedestrians

5-13

- □ Large radii:
- Increase crossing distance and
- Make crosswalk & ramp placement more difficult

Effect of large radius on crosswalk:

5-14

Bend OR

It adds to crossing distance...

Effect of large radius on crosswalk:

5-15

Bend OR

... and makes it hard to figure out where to cross

Effect of large radius on drivers

5-16

Tigard OR

They drive fast, ignoring pedestrians

5-17

1. Calculate
effective
radius: Larger
than built
radius if travel
lanes offset
from curb with
parking and/or
bike lane

5-18

2. At one-way streets, corner with no turns can have tight radius

5-19 Canyonville OR

3. Don't choose larger design vehicle than necessary

Bus makes turn several times an hour

5-20

Santa Barbara CA

3. Don't choose larger design vehicle than necessary

Moving van, once or twice a year; peds cross every day

4. Where appropriate, let trucks use 2nd lane

Designing for Pedestrian Safety – Intersection Geometry

5-22 Canyonville OR

5. Trucks can make very tight turns at slow speeds

6.a Turn common Single Unit truck (SU-30) into near lane

6.b Turn less common Semi (WB-50) into 2nd Iane

Minimize Curb Radius w/Truck Apron

5-25 Bend OR

Minimize Curb Radius w/Truck Apron

5-26 Charlotte NC

5-27

Discussion:

What are your policies & practices regarding corner radii?

Curb extensions Most focus is on reduced crossing distance

Other advantages:

- Better visibility between peds and motorists
- Traffic calming
- Room for street furniture

Curb extensions should be the width of the parking lane and not encroach on bike lanes or travel lanes

Better Visibility

Designing for Pedestrian Safety – Intersection Geometry

Pedestrians wait where they can see, in front of parked cars

Curb ext. places pedestrian where he can see and be seen

5-31 Salem OR

Before: high speed right-turns

After: slow speed right-turns

5-32 Salem OR

 Curb extension and new corner radius must be designed together – see earlier radius discussion

Joseph OR

Curb ext. increases likelihood drivers will yield to peds

- Curb extensions allow room for street furniture
- But use care not to block sight lines

-35 Fredericksburg VA

Curb extensions enable signs to be moved in

5-36 Salem OR

Drainage solutions 1. Additional inlet

5-37 Salem OR

Drainage solutions 2. Slotted drain

5-38 Tucson AZ

Drainage solutions 3. Leave original curb + islands

5-39 Tucson AZ

Drainage solutions 4. Same as before, plus plate

Curb Extension Integrated with the Sidewalk

"Parking pockets" in furniture zone have similar surface materials as the sidewalk

5-41 Lake Oswego OR

Before: road looks and feels wide

After: curb extension integral to sidewalk Street looks narrow even with no parked cars

Cornelius & Charlotte NC

More examples: curb extension integral to sidewalk

Reminder – crosswalks are provided:

- 1. To indicate to pedestrians where to cross
- 2. To indicate to drivers where to expect pedestrians

5-44 University Place WA

Designing for Pedestrian Safety – Intersection Geometry

Las Vegas NV

Crosswalks should normally be placed on all legs of an intersection

Albuquerque NM

Large intersection is capacity driven, pedestrian unfriendly...

Crosswalk placement requires balancing several goals that sometimes compete:

- Shortest crosswalk length
- Minimal crosswalk setback to:
 - Reduce out-of-direction travel
 - Provide good sight lines between peds and motorists
- Proper ramp placement:
 - Ramps entirely contained in crosswalk
 - Two ramps preferred whenever possible

Small corner radii allow two ramps, shortest crosswalks, direct travel paths

Larger radii create large undefined areas

Crosswalks at shortest crossing = longer walking distance

Single ramp reduces crosswalk setback but lengthens crosswalk

Balancing the goals works best

5-54 Corvallis OR

Crosswalk placement: Observe pedestrians

"When in doubt, paint it out!"

5-55

Honolulu HI

Crosswalks can have odd shapes to take pedestrians where they want to go

5-56

Discussion:

What are your policies & practices regarding crosswalk placement?

Benefits:

- Separate conflicts & decision points
- Reduce crossing distance
- □ Improve signal timing
- Reduce crashes

5-58 Philadelphia PA

Imagine the signal timing without island

Right-Turn Slip Lane: Design for Pedestrians

5-60

5-61 Fairbanks AK

Drivers naturally trace the right island shape

5-62 Fresno CA

... instead of here

Atlanta GA

Raised islands can improve a large multi-lane intersection

Honolulu HI

Raised islands can improve a large multi-lane intersection

1. Build raised islands between thru & RT lanes to separate ped/driver conflicts. Consolidate two crosswalks into one.

Raised islands can improve a large multi-lane intersection

2. Move stop bar forward to improve capacity and safety for motorists

Island Design Details

5-67

Salem OR

- Cut-through preferred over ramps
- Truncated domes at cut-throughs
- 8' or more preferred width 6' minimum

With ramps, provide at least 48" level area

5-69 St Paul MN

NOT Okay

Not acceptable

Acceptable, not great

St Paul MN

Best:

5-71

 Bullet nose protects pedestrians from high-speed leftturning cars

St Paul MN

5-72

Discussion:

What are your policies & practices regarding providing pedestrian islands?

5-73

Intersection Geometry: Recap of Design Measures

Should pedestrians have access to all corners?
Yes
Why?
Otherwise peds will dash across anyway
Intersection geometry should be?
Tight (small radii); right angles
How do you break up complex intersections?
With islands
Where should you place crosswalks?

Where pedestrians want to cross and where drivers can see

them

Intersection Geometry Learning Outcomes

- 1. You should now be able to:
- 2. Explain why tight/right angle intersections are best
- 3. Describe why pedestrians need access to all corners
- 4. Assess good crosswalk placement: where peds want to cross & where drivers can see them
- 5. Explain how islands break up complex intersections

5-75 Questions? Designing for Pedestrian Safety – Intersection Geometry