Walking Along the Road

Module 2

Learning Outcomes:

\square At the end of this module, you will be able to:
\square Describe the operational and safety benefits of shoulders and sidewalks
\square Select the appropriate design for sidewalks

Calculating Reduction in Number of Crashes

Crash Modification Factor (CMF): factor used to compute the expected number of crashes after implementing a given countermeasure.

Crash Reduction Factor (CRF): \% fewer crashes experienced on a road with a given countermeasure than on similar road without the countermeasure

Relationship between CMF and CRF:

$$
\begin{aligned}
& C M F=1-(C R F / 100) \\
& C R F=100^{\star}(1-C M F)
\end{aligned}
$$

(Examples on next slide)
CMF/CFR Clearinghouse: www.cmfclearinghouse.org

Shoulders and Sidewalks

\square Walking along the road accounts for 10-15\% of fatal pedestrian crashes:
\square Fewer in urban areas

- More in rural areas
\square They're easily preventable
\square Paved shoulders
reduce pedestrian
crashes by 70\% (CRF)
$\square C M F=0.3$
- Gan et al. study
\square Sidewalks reduce pedestrian crashes by 88\% (CRF)
\square CMF=0.12
- McMahon Study

Shoulders improve safety for all users

Sonoma Co. CA

For motorists: room to avoid crashes

Shoulders improve safety for all users

For bicyclists: a place to ride

Shoulders improve safety for all users

Benton Co. OR

For pedestrians: a place to walk
CMF = 0.3 (CRF = 70\%)

At a certain point, sidewalks are needed

Manitou Springs CO
"Goat trail" indicates sidewalks are needed

The 2011 AASHTO "Green Book" states:

"Sidewalks are an integral parts of city streets"

2-10 Quote from 2011 AASHTO Green Book 4.17.1 Sidewalks

Sidewalks are not added to streets, they are part of the street

Sidewalks reduce pedestrian crash risk by 88%

Curbs \& sidewalks slow traffic more

 than speed sign

Sidewalks define an urban street

Discussion: Why are sidewalks discontinuous?

Discussion:Why are sidewalks on one side not OK?

Answer: Pedestrians walk in street, or cross twice

Sample Implementation Strategy to retrofit existing streets $\mathrm{w} /$ sidewalks

Develop a program to fill in missing sidewalks over 20 years
\square How do you make such a daunting task manageable?
\square Seattle example: divide it into bite-size chunks, with overlapping priorities

Discussion:

\square What are your requirements for sidewalks:
\square What are the triggers?
\square Who pays for them?
\square Who maintains them?

Sidewalk Corridors -

The Zone System

The sidewalk corridor extends from the edge of roadway to the right-of-way and is divided into 4 zones:

- Curb zone
- Furniture zone
- Pedestrian zone
- Frontage zone

Curb Zone

Why the curb zone matters: Mountable curbs are inappropriate on local streets

Why the curb zone matters: It's where pedestrians transition from/to the street

Curbs \& drainage are the greatest sidewalk cost

This sidewalk cost little to install w/o curb

Furniture Zone

\square Local or collector streets 2 to 4 ft
\square Arterial or major streets 4 to 6 ft

All the "stuff" goes in the furniture zone

The furniture zone keeps the sidewalk clear

Sidewalk with furniture zone is pleasant to walk on

Planter strip helps define driveways, it's easier for drivers to find them and they're more likely to yield to pedestrians

Pedestrian Zone

5 feet necessary for two people to walk comfortably side by side or to pass each other; 6' preferred

Sidewalk should be as wide as needed to serve anticipated pedestrian use (use HCM ped LOS)

Minimum Sidewalk Recommendations

\square Local or collector streets 5 ft
\square Arterial or major streets 6 to 8 ft
\square Along parks, schools, and other major pedestrian generators 8 to 10 ft
\square CBD areas 8 to 12 ft

- 8-ft minimum in commercial areas with a planter strip, $12-\mathrm{ft}$ minimum in commercial areas with no planter strip

Frontage Zone

\square Doors, planters, etc...

- 3 feet
\square Café seating
- 8 feet

Shy distance concept applies to pedestrians, who will shy away from a vertical face; extra width is needed

Madison WI
An interesting façade makes narrow sidewalks feel wider

\square Fence placement and type impacts pedestrian comfort: the sidewalk on the left is wider, but feels narrow due to high and adjacent chain link fence

Before

After

One foot of frontage zone between right-of-way line and sidewalk makes maintenance easier

The Zone System - Summary

Residential street

The Zone System - Summary

Washington DC

Commercial street

With Zone System

Washington DC

Street furniture arranged in zones leaves sidewalk clear

Without Zone System

Randomly placed street furniture clutters sidewalk

Without Zone System

No buffer between pedestrians and traffic

ADA requirements for sidewalks

\square Well-designed sidewalks meet ADA:
\square Sidewalks should be clear of obstructions:

- 3' min clearance, 4' proposed
\square Sidewalk should have smooth surface
\square Sidewalk should be at 2\% max cross-slope including at driveways
\square The zone system creates a safer and more pleasant place to walk, and makes it easier to meet ADA requirements.

Best resource for ADA: Public Right-of-Way Accessibility Guidelines (PROWAG) draft. http://www.access-board.gov/prowac/draft.htm

Utilities \& poles should not obstruct sidewalk

Mitigate around obstacles on narrow curbside sidewalk

Recommendations from

Model Desian Manual

for Living Streets

	Boulevard	Avenue	Street
	Not applicable	Frontage: 18° Pedestran: 5^{\prime} Furniture: $4^{\prime}, 6^{\prime}-8^{\prime}$ at bus slops and where large trees ave desired Curb: 6 " Min. Widh: 11^{\prime}	Fronlage: 18" Pedestrian: 5^{\prime} Furnlture: 4^{\prime} Curb: 6" Min. Width: 11^{\prime}
	Fronlage: 18° Pedestrian: 6' Furnllure: $5^{\prime}, 6^{\prime} 8^{\prime}$ at bus slops and where large trees are destred Curb: 6° Min. Width: 13^{\prime}	Frontage: 18° Pedestrian: 6^{\prime} Furniture: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus slops and where large trees are destred Curb: 6" Min. Widh: 13^{\prime}	Fronlage: 18^{*} Pedestrian: 6^{\prime} Furnlture: $4^{\prime}, 6^{\prime}-8^{\prime}$ at bus stops and where large trees are deslred Curb: 6° Min. Width: 12^{\prime}
$\begin{aligned} & 0 \\ & 8 . \frac{0}{4} \\ & \frac{1}{4} \\ & \frac{1}{c} \\ & \frac{0}{6} \\ & \frac{1}{2} \end{aligned}$	Not applicable	Frontage: 18^{*} Pedestrian: 6' Furniture: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus slops and where large trees are deslied Curb: 6" Min. Widh: 13^{\prime}	Fronlage: 18* Pedestrian: 6^{\prime} Furnlture: 4', 6'-8' at bus stops and where large trees are deslred Curb: 6° Min. Width: 1^{\prime}
	Fronlage: $18^{\prime \prime}$ Pedestrian: 6' Furnilure: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus slops and where large trees are deslred Curb: 6^{*} Min. Width: 13^{\prime}	Frontage: 18° Pedestran: 6^{\prime} Furnilure: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus slops and where large trees are deslred Curb: 6" Min. Widh: 13^{\prime}	Not applicable
esn-y\|nW / pex!W	Fronloge: $30^{\circ}, 8^{\prime}$ with cafe seailing Pedestrian: 6' Furnllure: $5^{\prime}, 6^{\prime} 8^{\prime}$ at bus slops and where large trees are deslred Curb: 6° Min. Width: 14	Frontage: 30°, 8' with cale sealing Pedestitan: 6^{\prime} Furnilure: $4^{\prime}, 6^{\prime} 8^{\prime}$ at bus slops and where large trees are destred Curb: 6° Min. Width: 13^{\prime}	Fronlage: 18° Pedestrian: 6^{\prime} Furnllure: 4^{\prime} Curb: 6" Min. Width: 12^{\prime}

Boulevard		Avenue	Street
$\begin{aligned} & \overline{0} \\ & \frac{2}{n} \\ & \frac{3}{0} \\ & \hline \end{aligned}$	Frontage: 18" Pedestrian: 5' Furniture: 5^{\prime} Curb: $18^{\prime \prime}$ Min. Width: 13^{\prime}	Froniage: 18" Pedestrian: 5^{\prime} Furniture: 4^{\prime} Curb: 18^{*} Min. Width: 1^{\prime}	Frontage: 18" Pedestrian: 5^{\prime} Furniture: 4^{\prime} Curb: $18^{\prime \prime}$ Min. Width: 12^{\prime}
	Frontage: $30^{*}, 8^{\prime}$ with cafe sealing Pedestrian: 0^{\prime} Furniture: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus stops and where large trees are desired Curb: 6^{*} Min. Width: 14^{\prime}	Fronlage: $30^{*}, 8^{\prime}$ with cafe seating Pedestrian: 6^{\prime} Furniture: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus stops and where large trees are desired Curb: $6^{\prime \prime}$ Min. Width: 14^{\prime}	Frontage: $30^{\prime \prime}, 8^{\prime}$ with cafe seating Pedestrian: 6^{\prime} Furniture: 5^{\prime} Curb: $6^{\prime \prime}$ Min. Width: 14^{\prime}
	Frontage: 30° Pedestrian: 8' Furniture: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus stops and where large trees are desired Curb: 6^{*} Min. Width: 16^{\prime}	Frontage: 30° Pedestrian: 8^{\prime} Furnjure: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus stops and where large trees are desired Curb: $6^{\prime \prime}$ Min. Width: 16^{\prime}	Frontage: $18^{\prime \prime}$ Pedestrian: 6^{\prime} Furniture: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus stops and where large trees are desired Curb: $6^{\prime \prime}$ Min. Width: 13^{\prime}
$\begin{aligned} & \text { H } \\ & 0 . \\ & \text { © } \\ & \text { 告 } \end{aligned}$	Frontage: 18" Pedestrian: 5' Furnilure: 5^{\prime} Curb: 6^{*} Min. Width: 12	Fronlage: 18° Pedestrian: 5^{\prime} Furniture: 5^{\prime} Curb: 6° Min. Width: 12^{\prime}	Not applicable
	Frontage: 30° Pedestrian: 8' $^{\prime}$ Furniture: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus stops and where large trees are desired Curb: 6^{*} Min. Width: 16^{\prime}	Frontage: 30° Pedestrian: 8^{\prime} Furniture: $5^{\prime}, 5^{\prime}-8^{\prime}$ at bus stops and where large trees are desired Curb: $6^{\prime \prime}$ Min. Width: 16^{\prime}	Frontage: $18^{\prime \prime}$ Pedestrian: 6^{\prime} Furniture: $5^{\prime}, 6^{\prime}-8^{\prime}$ at bus stops and where large trees are desired Curb: $6^{\prime \prime}$ Min. Width: 13^{\prime}

2-50 Driveways

Driveways are the source of most conflicts with motor vehicles on sidewalks

Driveways built like intersections encourage high-speed turns

Driveways built like driveways encourage slow-speed turns

Intersection or Driveway?

\square This driveway was built like an intersection
\square Driver exits at high speed, not looking at pedestrians

Santa Monica, CA
This driveway tells drivers watch for pedestrians

ADA requirements for driveways: minimum pedestrian access route of 3^{\prime} (soon to be 4 ') at 2% max cross-slope

Easier to maintain level access with

 separated sidewalks

Without zone system hard to meet ADA

Sweet Home OR

For narrow curbside sidewalks, wrap sidewalk around apron

Driveway Coaster

Most common reason given by wheelchair users using the street
\square Driveways are not flat

\square For narrow curbside sidewalks
\square Fully lowered sidewalk

Walking Along the Road - Let's Recap

1. Crash Reduction Factors:
\square Rural environments:

- Paved shoulders reduce ped crashes up to 70\%
\square Urban environments:
\square Sidewalks reduce ped crashes up to 88%
- (most sidewalk crashes occur at driveways)

Walking Along the Road - Let's Recap

2. Sidewalk Design: The zone system
\square What are the 4 zones?
3. The curb zone
4. The furniture/planter/buffer zone
5. The pedestrian/walking zone
6. The frontage zone

Walking Along the Road - Let's Recap

3. Sidewalk Design: Key characteristics

How should the walking zone be designed?
\square Smooth
\square Separated from traffic
\square Clear of obstructions
\square Level cross-slope (max 2\%)
\square Wide enough to accommodate expected pedestrian volumes

Walking Along the Road Learning Outcomes:

You should now be able to:
\square Describe the operational and safety benefits of shoulders and sidewalks
\square Select appropriate designs for sidewalks

2-66 Questions?

